Let $n(U) = 700,\,n(A) = 200,\,n(B) = 300$ and $n(A \cap B) = 100,$ then $n({A^c} \cap {B^c}) = $

  • A

    $400$

  • B

    $600$

  • C

    $300$

  • D

    $200$

Similar Questions

If $n(U)$ = $600$ , $n(A)$ = $100$ , $n(B)$ = $200$ and $n(A \cap  B )$ = $50$, then $n(\bar A  \cap \bar B )$ is 

($U$ is universal set and $A$ and $B$ are subsets of $U$)

Taking the set of natural numbers as the universal set, write down the complements of the following sets:

$\{ x:x$ is an odd natural number $\} $

Fill in the blanks to make each of the following a true statement :

${{\mathop{\rm U}\nolimits} ^\prime } \cap A =  \ldots $

Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find

$A^{\prime}$

Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to