3 and 4 .Determinants and Matrices
normal

Let $\alpha $, $\beta$ $\gamma$, $\delta$ are distinct imaginary roots of

$z^5=1$ then value of $\left| {\begin{array}{*{20}{c}}
  {{e^\alpha }}&{{e^{2\alpha }}}&{{e^{3\alpha  + 1}}}&{ - {e^{ - \delta }}} \\ 
  {{e^\beta }}&{{e^{2\beta }}}&{{e^{3\beta  + 1}}}&{ - {e^{ - \delta }}} \\ 
  {{e^\gamma }}&{{e^{2\gamma }}}&{{e^{3\gamma  + 1}}}&{ - {e^{ - \delta }}} 
\end{array}} \right|$

A

$0$

B

$e$

C

$1$

D

${e^5}$

Solution

$\left|\begin{array}{lll}{e^{\alpha}} & {e^{2 \alpha}} & {e^{3 \alpha+1}} \\ {e^{\beta}} & {e^{2 \beta}} & {e^{3 \beta+1}} \\ {e^{\gamma}} & {e^{2 \gamma}} & {e^{3 \gamma+1}}\end{array}\right|-\left|\begin{array}{ccc}{e^{\alpha}} & {e^{2 \alpha}} & {e^{-\delta}} \\ {e^{\beta}} & {e^{2 \beta}} & {e^{-\delta}} \\ {e^{\gamma}} & {e^{2 \gamma}} & {e^{-\delta}}\end{array}\right|$

$e^{\alpha} \cdot e^{\beta} \cdot e^{\gamma} \cdot e^{1}\left|\begin{array}{ccc}{1} & {e^{\alpha}} & {e^{2 \alpha}} \\ {1} & {e^{\beta}} & {e^{2 \beta}} \\ {1} & {e^{\gamma}} & {e^{2 \gamma}}\end{array}\right|-e^{-\delta}\left|\begin{array}{ccc}{1} & {e^{\alpha}} & {e^{2 \alpha}} \\ {1} & {e^{\beta}} & {e^{2 \beta}} \\ {1} & {e^{\gamma}} & {e^{2 \gamma}}\end{array}\right|$

$\left(e^{\alpha+\beta+\gamma+1}-e^{-\delta}\right)\left|\begin{array}{ccc}{1} & {e^{\alpha}} & {e^{2 \alpha}} \\ {1} & {e^{\beta}} & {2^{2 \beta}} \\ {1} & {e^{\gamma}} & {e^{2 \gamma}}\end{array}\right|=0$

$\because \alpha+\beta+\gamma+\delta+1=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.