Let $f (x) = a^x (a > 0)$ be written as $f( x) = f_1( x) + f_2( x)$ , where $f_1( x)$ is an even function and $f_2( x)$ is an odd function. Then $f_1( x + y) + f_1( x - y )$ equals
$2{f_1}\left( x \right){f_2}\left( y \right)$
$2{f_1}\left( x \right){f_1}\left( y \right)$
$2{f_1}\left( {x + y} \right){f_2}\left( {x - y} \right)$
$2{f_1}\left( {x + y} \right){f_1}\left( {x - y} \right)$
The function $f(x) =$ ${x^{\frac{1}{{\ln \,x}}}}$
If function $f(x) = \frac{1}{2} - \tan \left( {\frac{{\pi x}}{2}} \right)$; $( - 1 < x < 1)$ and $g(x) = \sqrt {3 + 4x - 4{x^2}} $, then the domain of $gof$ is
Product of all the solution of the equation ${x^{1 + {{\log }_{10}}x}} = 100000x$ is
The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)
The range of the function $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ is