- Home
- Standard 11
- Mathematics
While calculating the mean and variance of 10 readings, a student wrongly used the reading 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.
Solution
Given $n=10, \bar{x}=45$ and $\sigma^{2}=16$
$\begin{array}{c}\bar{x}=45 \Rightarrow \frac{\Sigma x_{i}}{n}=45 \\\Rightarrow \quad \frac{\Sigma x_{i}}{10}=45 \Rightarrow \quad \Sigma x_{i}=450 \\\text { Corrected } \Sigma x_{i}=450-52+25=423\end{array}$
$\therefore \quad$ Corrected mean, $\bar{x}=\frac{423}{10}=42.3$
$\Rightarrow \quad \sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}$
$\begin{array}{ll}\Rightarrow & 16=\frac{\Sigma x_{i}^{2}}{10}-(45)^{2} \\ \Rightarrow & \Sigma x_{i}^{2}=20410\end{array}$
$\therefore \quad$ Corrected $\Sigma x_{i}^{2}=20410-(53)^{2}+(25)^{2}=18331$
And Corrected $\sigma^{2}=\frac{18331}{10}-(42.3)^{2}=43.81$
Similar Questions
Find the mean and variance for the data
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |