13.Statistics
hard

જ્યારે $10$ અવલોકન લખવામાં આવે ત્યારે એક વિધ્યાર્થી $25$ ની બદલે $52$ લખી નાખે છે  અને તેને મધ્યક અને વિચરણ અનુક્રમે $45$ અને $16$ મળે છે તો સાચો મધ્યક અને વિચરણ મેળવો 

Option A
Option B
Option C
Option D

Solution

Given $n=10, \bar{x}=45$ and $\sigma^{2}=16$

$\begin{array}{c}\bar{x}=45 \Rightarrow \frac{\Sigma x_{i}}{n}=45 \\\Rightarrow \quad \frac{\Sigma x_{i}}{10}=45 \Rightarrow \quad \Sigma x_{i}=450 \\\text { Corrected } \Sigma x_{i}=450-52+25=423\end{array}$

$\therefore \quad$ Corrected mean, $\bar{x}=\frac{423}{10}=42.3$

$\Rightarrow \quad \sigma^{2}=\frac{\Sigma x_{i}^{2}}{n}-\left(\frac{\Sigma x_{i}}{n}\right)^{2}$

$\begin{array}{ll}\Rightarrow & 16=\frac{\Sigma x_{i}^{2}}{10}-(45)^{2} \\ \Rightarrow & \Sigma x_{i}^{2}=20410\end{array}$

$\therefore \quad$ Corrected $\Sigma x_{i}^{2}=20410-(53)^{2}+(25)^{2}=18331$

And Corrected $\sigma^{2}=\frac{18331}{10}-(42.3)^{2}=43.81$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.