- Home
- Standard 11
- Physics
3-2.Motion in Plane
medium
While travelling from one station to another, a car travels $75 \,km$ North, $60\, km$ North-east and $20 \,km $ East. The minimum distance between the two stations is.......$km$
A$72$
B$112$
C$132$
D$155$
Solution
(c) $x=60 \cos 45^{\circ}+20$
$=\frac{60}{\sqrt{2}}+20=(30 \sqrt{2}+20) k m$
$y=\sqrt{2}$
$y=75+60 \sin 45^{\circ}$
$=75+\frac{60}{\sqrt{2}}=(75+30 \sqrt{2}) k m$
$S=\sqrt{X^{2}+Y^{2}}=\sqrt{(20+30 \sqrt{2})^{2}+(75+30 \sqrt{2})^{2}}$
$S=\sqrt{(62.4)^{2}+(117.4)^{2}}$
$=132 \mathrm{km}$
$=\frac{60}{\sqrt{2}}+20=(30 \sqrt{2}+20) k m$
$y=\sqrt{2}$
$y=75+60 \sin 45^{\circ}$
$=75+\frac{60}{\sqrt{2}}=(75+30 \sqrt{2}) k m$
$S=\sqrt{X^{2}+Y^{2}}=\sqrt{(20+30 \sqrt{2})^{2}+(75+30 \sqrt{2})^{2}}$
$S=\sqrt{(62.4)^{2}+(117.4)^{2}}$
$=132 \mathrm{km}$
Standard 11
Physics