Why concept of dimension has basic importance ?

Similar Questions

If pressure $P$, velocity $V$ and time $T$ are taken as fundamental physical quantities, the dimensional formula of force is

Sometimes it is convenient to construct a system of units so that all quantities can be expressed in terms of only one physical quantity. In one such system, dimensions of different quantities are given in terms of a quantity $X$ as follows: [position $]=\left[X^\alpha\right] ;[$ speed $]=\left[X^\beta\right]$; [acceleration $]=\left[X^{ p }\right]$; [linear momentum $]=\left[X^{ q }\right]$; [force $]=\left[X^{ I }\right]$. Then -

$(A)$ $\alpha+p=2 \beta$

$(B)$ $p+q-r=\beta$

$(C)$ $p-q+r=\alpha$

$(D)$ $p+q+r=\beta$

  • [IIT 2020]

The entropy of any system is given by

${S}=\alpha^{2} \beta \ln \left[\frac{\mu {kR}}{J \beta^{2}}+3\right]$

Where $\alpha$ and $\beta$ are the constants. $\mu, J, K$ and $R$ are no. of moles, mechanical equivalent of heat, Boltzmann constant and gas constant repectively. [Take ${S}=\frac{{dQ}}{{T}}$ ]

Choose the incorrect option from the following:

  • [JEE MAIN 2021]

In a particular system of units, a physical quantity can be expressed in terms of the electric charge $c$, electron mass $m_c$, Planck's constant $h$, and Coulomb's constant $k=\frac{1}{4 \pi \epsilon_0}$, where $\epsilon_0$ is the permittivity of vacuum. In terms of these physical constants, the dimension of the magnetic field is $[B]=[c]^\alpha\left[m_c\right]^\beta[h]^\gamma[k]^\delta$. The value of $\alpha+\beta+\gamma+\delta$ is. . . . .

  • [IIT 2022]

The equation of a wave is given by$Y = A\sin \omega \left( {\frac{x}{v} - k} \right)$where $\omega $ is the angular velocity and $v$ is the linear velocity. The dimension of $k$ is