The dimensions of the area $A$ of a black hole can be written in terms of the universal gravitational constant $G$, its mass $M$ and the speed of light $c$ as $A=G^\alpha M^\beta c^\gamma$. Here,

  • [KVPY 2015]
  • A

    $\alpha=-2, \beta=-2$ and $\gamma=4$

  • B

    $\alpha=2, \beta=2$ and $\gamma=-4$

  • C

    $\alpha=3, \beta=3$ and $\gamma=-2$

  • D

    $\alpha=-3, \beta=-3$ and $\gamma=2$

Similar Questions

$A$ and $B$ possess unequal dimensional formula then following operation is not possible in any case:-

Choose the correct match

List I 

List II

 $(i)$ Curie

 $(A)$ $ML{T^{ - 2}}$

 $(ii)$ Light year 

 $(B)$ $M$

 $(iii)$ Dielectric strength

 $(C)$ Dimensionless

 $(iv)$ Atomic weight

 $(D)$ $T$

 $(v)$ Decibel

 $(E)$ $M{L^2}{T^{ - 2}}$

 

 $(F)$ $M{T^{ - 3}}$

 

 $(G)$ ${T^{ - 1}}$

 

 $(H)$ $L$

 

 $(I)$ $ML{T^{ - 3}}{I^{ - 1}}$

 

 $(J)$ $L{T^{ - 1}}$

  • [IIT 1992]

Match List $I$ with List $II$

List $I$ List $II$
$(A)$ Young's Modulus $(Y)$ $(I)$ $\left[ M L ^{-1} T ^{-1}\right]$
$(B)$ Co-efficient of Viscosity $(\eta)$ $(II)$ $\left[ M L ^2 T ^{-1}\right]$
$(C)$ Planck's Constant $(h)$ $(III)$ $\left[ M L ^{-1} T ^{-2}\right]$
$(D)$ Work Function $(\phi)$ $(IV)$ $\left[ M L ^2 T ^{-2}\right]$

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]

Match List$-I$ with List$-II$.

List$-I$ List$-II$
$(A)$ Angular momentum $(I)$ $\left[ ML ^2 T ^{-2}\right]$
$(B)$ Torque $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$
$(C)$ Stress $(III)$ $\left[ ML ^2 T ^{-1}\right]$
$(D)$ Pressure gradient $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$

Choose the correct answer from the options given below:

  • [JEE MAIN 2023]

A small steel ball of radius $r$ is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity $\eta $. After some time the velocity of the ball attains a constant value known as terminal velocity ${v_T}$. The terminal velocity depends on $(i)$ the mass of the ball $m$, $(ii)$ $\eta $, $(iii)$ $r$ and $(iv)$ acceleration due to gravity $g$. Which of the following relations is dimensionally correct