The dimensions of the area $A$ of a black hole can be written in terms of the universal gravitational constant $G$, its mass $M$ and the speed of light $c$ as $A=G^\alpha M^\beta c^\gamma$. Here,
$\alpha=-2, \beta=-2$ and $\gamma=4$
$\alpha=2, \beta=2$ and $\gamma=-4$
$\alpha=3, \beta=3$ and $\gamma=-2$
$\alpha=-3, \beta=-3$ and $\gamma=2$
$A$ and $B$ possess unequal dimensional formula then following operation is not possible in any case:-
Choose the correct match
List I |
List II |
---|---|
$(i)$ Curie |
$(A)$ $ML{T^{ - 2}}$ |
$(ii)$ Light year |
$(B)$ $M$ |
$(iii)$ Dielectric strength |
$(C)$ Dimensionless |
$(iv)$ Atomic weight |
$(D)$ $T$ |
$(v)$ Decibel |
$(E)$ $M{L^2}{T^{ - 2}}$ |
$(F)$ $M{T^{ - 3}}$ |
|
$(G)$ ${T^{ - 1}}$ |
|
$(H)$ $L$ |
|
$(I)$ $ML{T^{ - 3}}{I^{ - 1}}$ |
|
$(J)$ $L{T^{ - 1}}$ |
Match List $I$ with List $II$
List $I$ | List $II$ |
$(A)$ Young's Modulus $(Y)$ | $(I)$ $\left[ M L ^{-1} T ^{-1}\right]$ |
$(B)$ Co-efficient of Viscosity $(\eta)$ | $(II)$ $\left[ M L ^2 T ^{-1}\right]$ |
$(C)$ Planck's Constant $(h)$ | $(III)$ $\left[ M L ^{-1} T ^{-2}\right]$ |
$(D)$ Work Function $(\phi)$ | $(IV)$ $\left[ M L ^2 T ^{-2}\right]$ |
Choose the correct answer from the options given below:
Match List$-I$ with List$-II$.
List$-I$ | List$-II$ |
$(A)$ Angular momentum | $(I)$ $\left[ ML ^2 T ^{-2}\right]$ |
$(B)$ Torque | $(II)$ $\left[ ML ^{-2} T ^{-2}\right]$ |
$(C)$ Stress | $(III)$ $\left[ ML ^2 T ^{-1}\right]$ |
$(D)$ Pressure gradient | $(IV)$ $\left[ ML ^{-1} T ^{-2}\right]$ |
Choose the correct answer from the options given below:
A small steel ball of radius $r$ is allowed to fall under gravity through a column of a viscous liquid of coefficient of viscosity $\eta $. After some time the velocity of the ball attains a constant value known as terminal velocity ${v_T}$. The terminal velocity depends on $(i)$ the mass of the ball $m$, $(ii)$ $\eta $, $(iii)$ $r$ and $(iv)$ acceleration due to gravity $g$. Which of the following relations is dimensionally correct