Wires $A$ and $B$ are made from the same material. $A$ has twice the diameter and three times the length of $B.$ If the elastic limits are not reached, when each is stretched by the same tension, the ratio of energy stored in $A$ to that in $B$ is

  • A

    $2:3$

  • B

    $3:4$

  • C

    $3:2$

  • D

    $6:1$

Similar Questions

The length of a rod is $20\, cm$ and area of cross-section $2\,c{m^2}$. The Young's modulus of the material of wire is $1.4 \times {10^{11}}\,N/{m^2}$. If the rod is compressed by $5\, kg-wt$ along its length, then increase in the energy of the rod in joules will be

A suspended long metal wire is stretched a small distance $x$ by a load $W$ in newton suspended at the other end. Select the best answer out of the following

An Indian rubber cord $L$ metre long and area of cross-section $A$ $metr{e^2}$ is suspended vertically. Density of rubber is $D$ $kg/metr{e^3}$ and Young's modulus of rubber is $E$ $newton/metr{e^2}$. If the wire extends by $l$ metre under its own weight, then extension $l$ is

A uniform wire of length $L$ and radius $r$ is twisted by an angle $\alpha$. If modulus of rigidity of the wire is $\eta$, then the elastic potential energy stored in wire, is .........

A wire is suspended by one end. At the other end a weight equivalent to $20\, N$ force is applied. If the increase in length is $1.0\, mm$, the increase in energy of the wire will be .......  $joule$