With one focus of the hyperbola $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{{16}}\,\, = \,\,1$ as the centre , a circle is drawn which is tangent to the hyperbola with no part of the circle being outside the hyperbola. The radius of the circle is
$less\ than$ $2$
$2$
$\frac{{11}}{3}$
$none$
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $49 y^{2}-16 x^{2}=784$
Let the tangent to the parabola $y^2=12 x$ at the point $(3, \alpha)$ be perpendicular to the line $2 x+2 y=3$.Then the square of distance of the point $(6,-4)$from the normal to the hyperbola $\alpha^2 x^2-9 y^2=9 \alpha^2$at its point $(\alpha-1, \alpha+2)$ is equal to $........$.
Tangents are drawn to the hyperbola $\frac{x^2}{9}-\frac{y^2}{4}=1$, parallel to the straight line $2 x-y=1$. The points of contacts of the tangents on the hyperbola are
$(A)$ $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ $(B)$ $\left(-\frac{9}{2 \sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$(C)$ $(3 \sqrt{3},-2 \sqrt{2})$ $(D)$ $(-3 \sqrt{3}, 2 \sqrt{2})$
Locus of the middle points of the parallel chords with gradient $m$ of the rectangular hyperbola $xy = c^2 $ is
The graph of the conic $ x^2 - (y - 1)^2 = 1$ has one tangent line with positive slope that passes through the origin. the point of tangency being $(a, b). $ Then Length of the latus rectum of the conic is