Let the eccentricity of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be reciprocal to that of the ellips $x^2+4 y^2=4$. If the hyperbola passes through a focus of the ellipse, then

$(A)$ the equation of the hyperbola is $\frac{x^2}{3}-\frac{y^2}{2}=1$

$(B)$ a focus of the hyperbola is $(2,0)$

$(C)$ the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$

$(D)$ the equation of the hyperbola is $x^2-3 y^2=3$

  • [IIT 2011]
  • A

    $(B,C)$

  • B

    $(A,D)$

  • C

    $(B,D)$

  • D

    $(C,D)$

Similar Questions

For $0<\theta<\pi / 2$, if the eccentricity of the hyperbola $\mathrm{x}^2-\mathrm{y}^2 \operatorname{cosec}^2 \theta=5$ is $\sqrt{7}$ times eccentricity of the ellipse $x^2 \operatorname{cosec}^2 \theta+y^2=5$, then the value of $\theta$ is :

  • [JEE MAIN 2024]

The normal to the rectangular hyperbola $xy = c^2$ at the point $'t_1'$ meets the curve again at the point $'t_2'$ . Then the value of $t_{1}^{3} t_{2}$ is

The value of $m$, for which the line $y = mx + \frac{{25\sqrt 3 }}{3}$, is a normal to the conic $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$, is

The straight line $x + y = \sqrt 2 p$ will touch the hyperbola $4{x^2} - 9{y^2} = 36$, if

The locus of a point $P(\alpha ,\,\beta )$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is

  • [AIEEE 2005]