Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
hard

Let the eccentricity of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ be reciprocal to that of the ellips $x^2+4 y^2=4$. If the hyperbola passes through a focus of the ellipse, then

$(A)$ the equation of the hyperbola is $\frac{x^2}{3}-\frac{y^2}{2}=1$

$(B)$ a focus of the hyperbola is $(2,0)$

$(C)$ the eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$

$(D)$ the equation of the hyperbola is $x^2-3 y^2=3$

A

$(B,C)$

B

$(A,D)$

C

$(B,D)$

D

$(C,D)$

(IIT-2011)

Solution

For the ellipse

$\frac{x^2}{2^2}+\frac{y^2}{1^2}=1$

we have $1^2=2^2\left(1-e^2\right)$

or $e=\frac{\sqrt{3}}{2}$

Therefore, the eccentricity of the hyperbola is $2 \sqrt{3}$. So, for hyperbola $b^2=a^2\left(\frac{4}{3}-1\right)$ ItBrgt or $3 b^2=a^2$

One of the foci of the ellipse is $(\sqrt{3}, 9)$.

Therefore, $\frac{3}{a^2}=1$

or $a^2=3$ and $b^2=1$

Therefore, the equation of the hyperbola is $\frac{x^2}{3}-\frac{y^2}{1}=1$ ItBrgt the focus of the hyperbola is

$(a e, 0) \equiv\left(\sqrt{3} \times \frac{2}{\sqrt{3}}, 0\right) \equiv(2,0)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.