- Home
- Standard 9
- Mathematics
2. Polynomials
medium
With the help of the remainder theorem. find the remainder when the polynomial $x^{3}+7 x^{2}+17 x+25$ is divided by $x+4$
Option A
Option B
Option C
Option D
Solution
Here, $p(x)=x^{3}+7 x^{2}+17 x+25$
Putting $x+4=0,$ i.e., $x=-4,$ we get
$p(-4)=(-4)^{3}+7(-4)^{2}+17(-4)+25$
$=(-64)+7(16)-68+25$
$=-64+112-68+25$
$=-132+137$
$=5$
So, by the remainder theorem, $5$ is the remainder when $x^{3}+7 x^{2}+17 x+25$ is divided by $x+4$
Standard 9
Mathematics