2. Electric Potential and Capacitance
hard

Within a spherical charge distribution of charge density $\rho \left( r \right)$, $N$ equipotential surfaces of potential ${V_0},{V_0} + \Delta V,{V_0} + 2\Delta V,$$.....{V_0} + N\Delta V\left( {\Delta V > 0} \right),$ are drawn and have increasing radii $r_0, r_1, r_2,......r_N$, respectively. If the difference in the radii of the surfaces is constant for all values of $V_0$ and $\Delta V$ then

A

$\rho \left( r \right) = $ constant

B

$\rho \left( r \right) \propto \frac{1}{{{r^2}}}$

C

$\rho \left( r \right) \propto \frac{1}{r}$

D

$\rho \left( r \right) \propto r$

(JEE MAIN-2016)

Solution

As we know electric field, $E = \frac{{ – dv}}{{dr}}$

$E=$ constant   $\therefore $ $dv$ and $dr$ same

$ \Rightarrow \,\rho  \propto \frac{1}{r}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.