- Home
- Standard 12
- Physics
The electric potential $V$ at any point $(x, y, z),$ all in metres in space is given by $V = 4x^2$ volt. The electric field at the point $(1, 0, 2)$ in volt/meter, is
$8$,along negative $X-$ axis
$8$,along positive $ X- $ axis
$16$ along negative $X-$ axis
$16$ along positive $X-$ axis
Solution
$\vec{E}=-\bar{\nabla} V$
where $\bar{\nabla}=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}$
$\therefore \quad \vec{E}=-\left[\hat{i} \frac{\partial V}{\partial x}+\hat{j} \frac{\partial V}{\partial y}+\hat{k} \frac{\partial V}{\partial z}\right]$
Here, $V=4 x^{2} \quad \therefore \quad \vec{E}=-8 x \hat{i}$
The electric field at point $(1,0,2)$ is
$\vec{E}_{(1,0,2)}=-8 \hat{i}\,Vm^{-1}$
So electric field is along the negative $X$ -axis.