Without expanding, prove that $\Delta=\left|\begin{array}{ccc}x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1\end{array}\right|=0$
Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}$ to $\Delta,$ we get
$\Delta=\left|\begin{array}{ccc}
x+y+z & x+y+z & x+y+z \\
z & x & y \\
1 & 1 & 1
\end{array}\right|$
since the elements of $R_{1}$ and $R_{3}$ are proportional, $\Delta=0$
Which of the following values of $\alpha$ satisfy the equation
$\left|\begin{array}{lll}(1+\alpha)^2 & (1+2 \alpha)^2 & (1+3 \alpha)^2 \\ (2+\alpha)^2 & (2+2 \alpha)^2 & (2+3 \alpha)^2 \\ (3+\alpha)^2 & (3+2 \alpha)^2 & (3+3 \alpha)^2\end{array}\right|=-648 \alpha$ ?
$(A)$ $-4$ $(B)$ $9$ $(C)$ $-9$ $(D)$ $4$
If $D =$ $\left| {\,\begin{array}{*{20}{c}}{\frac{1}{z}}&{\frac{1}{z}}&{ - \frac{{(x + y)}}{{{z^2}}}}\\{ - \frac{{(y + z)}}{{{x^2}}}}&{\frac{1}{x}}&{\frac{1}{x}}\\{ - \frac{{y(y + z)}}{{{x^2}z}}}&{\frac{{x + 2y + z}}{{xz}}}&{ - \frac{{y(x +y)}}{{x{z^2}}}}\end{array}\,} \right|$ then, the incorrect statement is
If $a, b $ and $ c$ are non zero numbers, then $\Delta = \left| {\,\begin{array}{*{20}{c}}{{b^2}{c^2}}&{bc}&{b + c}\\{{c^2}{a^2}}&{ca}&{c + a}\\{{a^2}{b^2}}&{ab}&{a + b}\end{array}\,} \right|$ is equal to
By using properties of determinants, show that:
$\left|\begin{array}{ccc}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{array}\right|=(a+b+c)^{3}$
If $\omega $is a cube root of unity, then $\left| {\,\begin{array}{*{20}{c}}{x + 1}&\omega &{{\omega ^2}}\\\omega &{x + {\omega ^2}}&1\\{{\omega ^2}}&1&{x + \omega }\end{array}\,} \right| = $