Work done by the frictional force is
Negative
Positive
Zero
All of the above
Three particles of masses $10g, 20g$ and $40g$ are moving with velocities $10\widehat i,10\widehat j$ and $10\widehat k$ $m/s$ respectively. If due to some mutual interaction, the first particle comes to rest and the velocity of second particle becomes $\left( {3\widehat i + 4\widehat j\,\,} \right)\, m/s$, then the velocity of third particle is
$A$ man who is running has half the kinetic energy of the boy of half his mass. The man speeds up by $1 \, m/s$ and then has the same kinetic energy as the boy. The original speed of the man was
A particle of mass $M$ is moving in a horizontal circle ofradius $R$ with uniform speed $v$. When it moves from one point to a diametrically opposite point, its
A body of mass ${m_1}$ moving with uniform velocity of $40 \,m/s$ collides with another mass ${m_2}$ at rest and then the two together begin to move with uniform velocity of $30\, m/s$. The ratio of their masses $\frac{{{m_1}}}{{{m_2}}}$ is
A light and a heavy body have equal kinetic energy. Which one has a greater momentum