Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$
$a_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$
$a_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$
$a_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$
$a_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$
Therefore, the required terms are $\frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$ and $\frac{7}{6}$
The sum of all natural numbers between $1$ and $100$ which are multiples of $3$ is
For a series $S = 1 -2 + 3\, -\, 4 … n$ terms,
Statement $-1$ : Sum of series always dependent on the value of $n$ , i.e. whether it is even or odd.
Statement $-2$ : Sum of series is $-\frac {n}{2}$ when value of $n$ is any even integer
If $a,\;b,\;c,\;d,\;e,\;f$ are in $A.P.$, then the value of $e - c$ will be
Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is
If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.