- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$
A
$\frac{{ - 1}}{6},\frac{1}{6},\frac{1}{2},\frac{5}{6},\frac{7}{6}$
B
$\frac{{ - 1}}{6},\frac{1}{6},\frac{1}{2},\frac{5}{6},\frac{7}{6}$
C
$\frac{{ - 1}}{6},\frac{1}{6},\frac{1}{2},\frac{5}{6},\frac{7}{6}$
D
$\frac{{ - 1}}{6},\frac{1}{6},\frac{1}{2},\frac{5}{6},\frac{7}{6}$
Solution
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$
$a_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$
$a_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$
$a_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$
$a_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$
Therefore, the required terms are $\frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$ and $\frac{7}{6}$
Standard 11
Mathematics