Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{2 n-3}{6}$
Substituting $n=1,2,3,4,5,$ we obtain
$a_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$
$a_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$
$a_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$
$a_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$
$a_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$
Therefore, the required terms are $\frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$ and $\frac{7}{6}$
After inserting $n$, $A.M.'s$ between $2$ and $38$, the sum of the resulting progression is $200$. The value of $n$ is
If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in
For three positive integers $p , q , r , x ^{ pq p ^2}= y ^{ qr }= z ^{ p ^2 r }$ and $r=p q+1$ such that $3,3 \log _y x, 3 \log _z y, 7 \log _x z$ are in A.P. with common difference $\frac{1}{2}$. Then $r - p - q$ is equal to
There are $15$ terms in an arithmetic progression. Its first term is $5$ and their sum is $390$. The middle term is
If the variance of the terms in an increasing $A.P.$, $b _{1}, b _{2}, b _{3}, \ldots b _{11}$ is $90,$ then the common difference of this $A.P.$ is