If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is
$66$
$65$
$81$
$78$
The sum of all the elements of the set $\{\alpha \in\{1,2, \ldots, 100\}: \operatorname{HCF}(\alpha, 24)=1\}$ is
If ${S_n} = nP + \frac{1}{2}n(n - 1)Q$, where ${S_n}$ denotes the sum of the first $n$ terms of an $A.P.$, then the common difference is
The four arithmetic means between $3$ and $23$ are
If $a_1, a_2, a_3, .... a_{21}$ are in $A.P.$ and $a_3 + a_5 + a_{11}+a_{17} + a_{19} = 10$ then the value of $\sum\limits_{r = 1}^{21} {{a_r}} $ is
Let $3,6,9,12, \ldots$ upto $78$ terms and $5,9,13,17, \ldots$ upto $59$ terms be two series. Then, the sum of the terms common to both the series is equal to