8. Sequences and Series
hard

If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is 

A

$66$

B

$65$

C

$81$

D

$78$

(JEE MAIN-2020)

Solution

Given that

$3^{4-\sin 2 \alpha}+3^{2 \sin 2 \alpha-1}=28$

Let $3^{2} \sin 2 \alpha=t$

$\frac{81}{t}+\frac{t}{3}=28$

$t=81,3$

$3^{2 \sin 2 \alpha}=3^{1}, 3^{4}$

$2 \sin 2 \alpha=1,4$

$\sin 2 \alpha=\frac{1}{2}, 2($ rejected $)$

First term $a=3^{2} \sin 2 \alpha-1$

$a=1$

Second term $=14$

$\therefore$ common difference $d=13$

$T_{6}=a+5 d$

$T _{6}=1+5 \times 13$

$T_{6}=66$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.