अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=\frac{2 n-3}{6}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=1,2,3,4,5,$ we obtain

$a_{1}=\frac{2 \times 1-3}{6}=\frac{-1}{6}$

$a_{2}=\frac{2 \times 2-3}{6}=\frac{1}{6}$

$a_{3}=\frac{2 \times 3-3}{6}=\frac{3}{6}=\frac{1}{2}$

$a_{4}=\frac{2 \times 4-3}{6}=\frac{5}{6}$

$a_{5}=\frac{2 \times 5-3}{6}=\frac{7}{6}$

Therefore, the required terms are $\frac{-1}{6}, \frac{1}{6}, \frac{1}{2}, \frac{5}{6}$ and $\frac{7}{6}$

Similar Questions

यदि $a_m$ समान्तर श्रेणी के $m$ वें पद को प्रदर्शित करता हो, तब $a_m$ का मान होगा   

माना $3,7,11,15, \ldots, 403$ तथा $2,5,8,11, \ldots$ $404$ दो समान्तर श्रेढ़ियाँ है तो इनमें उभयनिष्ठ पदों का योग है .............

  • [JEE MAIN 2024]

यदि एक समान्तर श्रेढ़ी के प्रथम तीन पदों का योगफल तथा गुणनफल क्रमशः $33$ तथा $1155$ है, तो इसके $11$ वें पद का एक मान है 

  • [JEE MAIN 2019]

एक बहुभुज के दो क्रमिक अंतःकोणों का अंतर $5^{0}$ है। यदि सबसे छोटा कोण $120^{\circ}$ हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।

माना कि किसी समांतर श्रेणी के $n, 2 n,$ तथा $3 n$ पदों का योगफल क्रमशः $S _{1}, S _{2}$ तथा $S _{3}$ है तो दिखाइए कि $S _{3}=3\left( S _{2}- S _{1}\right)$