Write the formula for rotational kinetic energy.

Similar Questions

A circular disc is rolling on a horizontal plane. Its total kinetic energy is  $300\,\,J.$  ......... $J$ is its translational  $K.E.$

Two uniform circular discs are rotating independently in the same direction around their common axis passing through their centres. The moment of inertia and angular velocity of the first disc are $0.1 \;kg - m ^{2}$ and $10\; rad \,s^{-1}$ respectively while those for the second one are $0.2 \;kg - m ^{2}$ and $5\; rad \,s ^{-1}$ respectively. At some instant they get stuck together and start rotating as a single system about their common axis with some angular speed. The Kinetic energy of the combined system is ...........$J$

  • [JEE MAIN 2020]

A solid cylinder of mass $20 \;kg$ rotates about its axis with angular speed $100\; rad s ^{-1}$ The radius of the cylinder is $0.25 \;m$. What is the kinetic energy associated with the rotation of the cylinder? What is the magnitude of angular momentum of the cylinder about its axis?

The $M.I.$ of a body about the given axis is $1.2\,kg \times m^2$ and initially the body is at rest. In order to produce a rotational kinetic energy of $1500\,joule$ an angular acceleration of $25\,rad/sec^2$ must be applied about that axis for a duration of ........ $\sec$.

This question has Statement $1$ and Statement $2$. Of the four choices given after the Statements, choose the one that best describes the two Statements.
Statement $1$ : When moment of inertia $I$ of a body rotating about an axis with angular speed $\omega $ increases, its angular momentum $L$ is unchanged but the kinetic energy $K$ increases if there is no torque applied on it.
Statement $2$ : $L = I\omega $, kinetic energy of rotation $ = \frac{1}{2}\,I\omega ^2$

  • [AIEEE 2012]