Write the principle of conservation of mechanical energy for conservative force.

Similar Questions

A rain drop of radius $2\; mm$ falls from a helght of $500 \;m$ above the ground. It falls with decreasing acceleration (due to viscous resistance of the air) until at half its original hetght, it attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done by the gravitational force on the drop in the first and second half of its journey ? What is the work done by the resistive force in the entire journey if its speed on reaching the ground is $10\; m s ^{-1} ?$

Two putty balls of equal mass moving with equal velocity in mutually perpendicular directions, stick together after collision. If the balls were initially moving with a velocity of $45\sqrt 2 \,m{s^{ - 1}}$ each, the velocity of their combined mass after collision is .................. $\mathrm{m} / \mathrm{s}^{-1}$

$A$ block of mass $m$ starts from rest and slides down $a$ frictionless semi-circular track from $a$ height $h$ as shown. When it reaches the lowest point of the track, it collides with a stationary piece of putty also having mass $m$. If the block and the putty stick together and continue to slide, the maximum height that the block-putty system could reach is:

$A$ projectile of mass $"m"$ is projected from ground with a speed of $50 \,m/s$ at an angle of $53^o$ with the horizontal. It breaks up into two equal parts at the highest point of the trajectory. One particle coming to rest immediately after the explosion. The distance between the pieces of the projectile when they reach the ground are:

A projectile is fired at a speed of $100\, m/sec$ at an angle of $37^o$ above the horizontal. At the highest point, the projectile breaks into two parts of mass ratio $1:3$ , the smaller coming to rest. Then the distance of heavier part from the launching point is ............... $\mathrm{m}$