Write the principle of conservation of mechanical energy for non-conservative force.

Similar Questions

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. The final velocity of the wedge $v_2$ is

 

In the figure shown, a particle is released from the position $A$ on a smooth track. When the particle reaches at $B$, then normal reaction on it by the track is .........

A particle of mass $m$ travelling along $x-$ axis with speed $v_0$ shoots out $1/3^{rd}$ of its mass with a speed $2v_0$ along $y-$ axis. The velocity of remaining piece is

A particle of mass $m$ moving horizontally with $v_0$ strikes $a$ smooth wedge of mass $M$, as shown in figure. After collision, the ball starts moving up the inclined face of the wedge and rises to $a$ height $h$. Identify the correct statement $(s)$ related to the situation when the particle starts moving downward.

A rain drop of radius $2\; mm$ falls from a helght of $500 \;m$ above the ground. It falls with decreasing acceleration (due to viscous resistance of the air) until at half its original hetght, it attains its maximum (terminal) speed, and moves with uniform speed thereafter. What is the work done by the gravitational force on the drop in the first and second half of its journey ? What is the work done by the resistive force in the entire journey if its speed on reaching the ground is $10\; m s ^{-1} ?$