Which of the following are examples of the null set
Set of odd natural numbers divisible by $2$
Let $S=\{1,2,3, \ldots, 40)$ and let $A$ be a subset of $S$ such that no two elements in $A$ have their sum divisible by 5 . What is the maximum number of elements possible in $A$ ?
Which of the following pairs of sets are equal ? Justify your answer.
$A = \{ \,n:n \in Z$ and ${n^2}\, \le \,4\,\} $ and $B = \{ \,x:x \in R$ and ${x^2} - 3x + 2 = 0\,\} .$
Which of the following are examples of the null set
Set of even prime numbers
The number of proper subsets of the set $\{1, 2, 3\}$ is