8. Introduction to Trigonometry
medium

सत्य या असत्य लिखिए और अपने उत्तर का औचित्य दीजिए :

$\cos \theta=\frac{a^{2}+b^{2}}{2 a b}$ है, जहाँ $a$ और $b$ ऐसी दो भिन्न संख्याएँ हैं कि $a b>0$ है।

Option A
Option B
Option C
Option D

Solution

False

Given, $a$ and $b$ are two distinct numbers such that $a b >0$.

Using, $AM > GM$

[since, $AM$ and $GM$ of two number $a$ and $b$ are $\frac{a+b}{2}$ and $\sqrt{a b}$, respectively]

$\Rightarrow \frac{a^{2}+b^{2}}{2}>\sqrt{a^{2} \cdot b^{2}}$

$\Rightarrow a^{2}+b^{2}>2 a b$

$\Rightarrow \frac{a^{2}+b^{2}}{2 a b}>1$ $\left[\because \cos \theta=\frac{a^{2}+b^{2}}{2 a b}\right]$

$\Rightarrow \cos \theta>1$ $[\because-1 \leq \cos \theta \leq 1]$

which is not possible.

Hence, $\cos \theta \neq \frac{a^{2}+b^{2}}{2 a b}$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.