Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
We have, $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$
$=\frac{6+9 i-4 i+6}{2-i+4 i+2}=\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i} $
$=\frac{48-36 i+20 i+15}{16+9}=\frac{63-16 i}{25}=\frac{63}{25}-\frac{16}{25} i$
Therefore, conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ is $\frac{63}{25}+\frac{16}{25} i$.
The conjugate of the complex number $\frac{{2 + 5i}}{{4 - 3i}}$ is
If $z$ is a complex number, then $z.\,\overline z = 0$ if and only if
If $\alpha$ denotes the number of solutions of $|1-i|^x=2^x$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where $z=\frac{\pi}{4}(1+i)^4\left(\frac{1-\sqrt{\pi i}}{\sqrt{\pi}+i}+\frac{\sqrt{\pi}-i}{1+\sqrt{\pi} \mathrm{i}}\right), i=\sqrt{-1}$, then the distance of the point $(\alpha, \beta)$ from the line $4 x-3 y=7$ is
If ${z_1},{z_2}$ are two complex numbers such that $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right| = 1$ and $i{z_1} = k{z_2}$, where $k \in R$, then the angle between ${z_1} - {z_2}$ and ${z_1} + {z_2}$ is
The solutions of equation in $z$, $| z |^2 -(z + \bar{z}) + i(z - \bar{z})$ + $2$ = $0$ are $(i = \sqrt{-1})$