4-1.Complex numbers
medium

 Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.

A

$\frac{63}{25}+\frac{16}{25} i$

B

$\frac{63}{25}+\frac{16}{25} i$

C

$\frac{63}{25}+\frac{16}{25} i$

D

$\frac{63}{25}+\frac{16}{25} i$

Solution

We have, $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$

$=\frac{6+9 i-4 i+6}{2-i+4 i+2}=\frac{12+5 i}{4+3 i} \times \frac{4-3 i}{4-3 i} $

$=\frac{48-36 i+20 i+15}{16+9}=\frac{63-16 i}{25}=\frac{63}{25}-\frac{16}{25} i$

Therefore, conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ is $\frac{63}{25}+\frac{16}{25} i$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.