The number of solutions of the equation ${z^2} + \bar z = 0$ is
$1$
$2$
$3$
$4$
If $z_1, z_2, z_3$ $\in$ $C$ such that $|z_1| = |z_2| = |z_3| = 2$, then greatest value of expression $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ is
Find the modulus and the argument of the complex number $z=-1-i \sqrt{3}$.
If $\frac{{2{z_1}}}{{3{z_2}}}$ is a purely imaginary number, then $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$ =
If $0 < amp{\rm{ (z)}} < \pi {\rm{,}}$then $amp(z)-amp ( - z) = $
If the conjugate of $(x + iy)(1 - 2i)$ be $1 + i$, then