ધારો કે $(1+x)^n$ ના વિસ્તરણમાં ચાર ક્રમિક પદોના સહગુણકો $2-p, p, 2-\alpha, \alpha$ છે. તો $p^2-\alpha^2+6 \alpha+2 p$ નું મૂલ્ય.................... છે. 

  • [JEE MAIN 2024]
  • A

    $4$

  • B

    $10$

  • C

    $8$

  • D

    $6$

Similar Questions

${(1 + x)^n}$ ના વિસ્તરણમાં ક્રમિક ત્રણ પદો અનુક્રમે $165, 330$ અને $462$ હોય, તો $n$ મેળવો.

$\left(x \sin \alpha+a \frac{\cos \alpha}{x}\right)^{10}$ ના વિસ્તરણમાં જો અચળ પદ  $\frac{10 !}{(5 !)^{2}}$ હોય તો $' a^{\prime}$ ની  કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $(1+a)^{n}$ ના વિસ્તરણમાં $a^{r-1}, a^{r}$ અને $a^{r+1}$ ના સહગુણકો સમાંત૨ શ્રેણીમાં હોય, તો સાબિત કરો કે $n^{2}-n(4 r+1)+4 r^{2}-2=0$

જો ${\left[ {2\,x\,\, + \,\,\frac{1}{x}} \right]^n}$ ના વિસ્તરણમાં બધા સહગુણકોનો સરવાળો $256$ થાય તો આ વિસ્તરણમાં અચળ પદ મેળવો 

${\left( {\frac{{x + 1}}{{{x^{2/3}} - {x^{\frac{1}{3}}} + 1\;}}--\frac{{x - 1}}{{x - {x^{1/2}}}}} \right)^{10}}$ના વિસ્તરણમાં અચળ પદ મેળવો. 

  • [JEE MAIN 2013]