ધારો કે $(1+x)^n$ ના વિસ્તરણમાં ચાર ક્રમિક પદોના સહગુણકો $2-p, p, 2-\alpha, \alpha$ છે. તો $p^2-\alpha^2+6 \alpha+2 p$ નું મૂલ્ય.................... છે.
$4$
$10$
$8$
$6$
${(1 + x)^n}$ ની વિસ્તરણમાં $p^{th}$ અને ${(p + 1)^{th}}$ પદના સહગુણક અનુક્રમે $p$ અને $q$ હોય તો $p + q = $
$\left(2 x^{3}+\frac{3}{x^{k}}\right)^{12}, x \neq 0$ નાં દ્રીપદી વિસ્તરણમાં અચળ પદ $2^{8} \cdot \ell$ હોય, જ્યાં $\ell$ અયુગ્મ સંખ્યા હોય તેવા ધનપુર્ણાક $k$ ની સંખ્યા............. છે
જો $(1+x)^{34}$ ના વિસ્તરણના $(r -5)$ માં પદ અને $(2 -1)$ માં પદના સહગુણકો સમાન હોય, તો $r$ શોધો.
${\left( {3x - \frac{{{x^3}}}{6}} \right)^9}$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો
જો $(x+y)^n$ ના વિસ્તરણમાં બીજા, ત્રીજા અને ચોથા પદો અનુક્રમે $135,30$ અને $\frac{10}{3}$ હોય, તો $6\left(n^3+x^2+y\right)=$ ...............