$\left( {\frac{1}{{60}} - \frac{{{x^8}}}{{81}}} \right).{\left( {2{x^2} - \frac{3}{{{x^2}}}} \right)^6}$ ના વિસ્તરણમાં એવું પદ મેળવો કે જે $x$ પર આધારિત નથી.
$36$
$-36$
$-108$
$-72$
જો ${\left( {{x^2} + \frac{k}{x}} \right)^5}$ ના વિસ્તરણમાં $x$ નો સહગુણક $270$ હોય , તો $k =$
${(1 + x + {x^2} + {x^3})^n}$ ના વિસ્તરણમાં ${x^4}$ નો સહગુણક મેળવો.
$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, માં $x^3$ અને $x^{-13}$ ના સહગુણાકોનો સરવાળો..........................
દ્વિપદી પ્રમેયનો ઉપયોગ કરી $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ નું વિસ્તરણ કરો.
જો $a$ અને $b$ ભિન્ન પૂર્ણાક હોય, તો સાબિત કરો કે $a^{n}-b^{n}$ નો એક અવયવ $a-b$ છે, જ્યાં $n$ એ ધન પૂર્ણાક છે.