મધ્યમ પદ શોધો : $\left(3-\frac{x^{3}}{6}\right)^{7}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that in the expansion of $(a+b)^{n},$ in $n$ is odd, then there are two middle terms, Namely $\left(\frac{n+1}{2}\right)^{th}$ term and $\left(\frac{n+1}{2}+1\right)^{th}$ term

Therefore, the middle terms in the expansion $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{th}=4^{th}$ and $\left(\frac{7+1}{2}+1\right)^{th}=5^{th}$ term

${T_4} = {T_{3 + 1}} = {\,^7}{C_3}{(3)^{7 - 3}}{\left( { - \frac{{{x^3}}}{6}} \right)^3} = {( - 1)^3}\frac{{7!}}{{3!4!}} \cdot {3^4} \cdot \frac{{{x^9}}}{{{6^3}}}$

$=-\frac{7 \cdot 6 \cdot 5 \cdot 4 !}{3 \cdot 2 \cdot 4 !} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9}=-\frac{105}{8} x^{9}$

${T_5} = {T_{4 + 1}} = {\,^7}{C_4}{(3)^{7 - 4}}{\left( { - \frac{{{x^3}}}{6}} \right)^4} = {( - 1)^4}\frac{{7!}}{{4!3!}} \cdot {3^3} \cdot \frac{{{x^{12}}}}{{{6^4}}}$

$=\frac{7 \cdot 6 \cdot 5.4 !}{4 ! \cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$

Similar Questions

$\sum\limits_{m = 0}^{100} {{\,^{100}}{C_m}{{(x - 3)}^{100 - m}}} {.2^m}$ ના વિસ્તરણમાં ${x^{53}}$ નો સહગુણક મેળવો.

અહી દ્રીપદી $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ ના વિસ્તરણમાં  $\frac{1}{\sqrt[4]{3}}$  ની વધતી ઘાતાંક માં શરૂઆત થી પાંચમું પદ અને અંતથી પાંચમું પદનો ગુણોતર $\sqrt[4]{6}: 1$  છે. જો શરૂઆતથી છઠ્ઠુ પદ  $\frac{\alpha}{\sqrt[4]{3}}$ હોય તો  $\alpha$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]

મધ્યમ પદ શોધો : $\left(\frac{x}{3}+9 y\right)^{10}$

${(1 + {t^2})^{12}}(1 + {t^{12}})\,(1 + {t^{24}})$ ના વિસ્તરણમાં ${t^{24}}$ નો સહગુણક મેળવો.

  • [IIT 2003]

 $\left( {1 - \frac{1}{x} + 3{x^5}} \right){\left( {2{x^2} - \frac{1}{x}} \right)^8}$ ના વિસ્તરણમાં $x$ પર આધારિત ન હોય તેવું પદ મેળવો. 

  • [JEE MAIN 2015]