$0.1$ $mol$ of $H_2S(g)$ is kept in a $0.4$ litre vessel at $1000\,K$. For the reaction -
$2{H_2}S(g)\,\rightleftharpoons\,2{H_2}(g)\, + \,{S_2}(g)\,;\,{K_c} = {10^{ - 6}}\% $ dissociation of $H_2S$ is.......$\%$
$0.5$
$1$
$2$
$3$
It has been found that the $pH$ of a $0.01$ $M$ solution of an organic acid is $4.15 .$ Calculate the concentration of the anion, the ionization constant of the acid and its $p{K_a}$
What concentration of $Ac^-$ ions will reduce $H_3O^+$ ion to $2 × 10^{-4}\ M$ in $0.40\ M$ solution of $HAc$ ? $K_a (HAc) = 1.8 × 10^{-5}$ ?
If the $pKa$ of lactic acid is $5$,then the $pH$ of $0.005$ $M$ calcium lactate solution at $25^{\circ}\,C$ is $........\times 10^{-1}$ (Nearest integer)
The ionisation constant of acetic acid is $1.8 \times 10^{-5}$. The concentration at which it will be dissociated to $2\%$, is
When $100 \ mL$ of $1.0 \ M \ HCl$ was mixed with $100 \ mL$ of $1.0 \ M \ NaOH$ in an insulated beaker at constant pressure, a temperature increase of $5.7^{\circ} C$ was measured for the beaker and its contents (Expt. $1$). Because the enthalpy of neutralization of a strong acid with a strong base is a constant $\left(-57.0 \ kJ \ mol ^{-1}\right)$, this experiment could be used to measure the calorimeter constant. In a second experiment (Expt. $2$), $100 \ mL$ of $2.0 \ M$ acetic acid $\left(K_a=2.0 \times 10^{-5}\right)$ was mixed with $100 \ mL$ of $1.0 M \ NaOH$ (under identical conditions to Expt. $1$) where a temperature rise of $5.6^{\circ} C$ was measured.
(Consider heat capacity of all solutions as $4.2 J g ^{-1} K ^{-1}$ and density of all solutions as $1.0 \ g mL ^{-1}$ )
$1.$ Enthalpy of dissociation (in $kJ mol ^{-1}$ ) of acetic acid obtained from the Expt. $2$ is
$(A)$ $1.0$ $(B)$ $10.0$ $(C)$ $24.5$ $(D)$ $51.4$
$2.$ The $pH$ of the solution after Expt. $2$ is
$(A)$ $2.8$ $(B)$ $4.7$ $(C)$ $5.0$ $(D)$ $7.0$
Give the answer question $1$ and $2.$