Write examples of weak acids and weak bases and give ionic equilibrium in its aqueous solution.
$(A)$ Weak Acids | Ionic Equilibriums |
$(1)$ Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ | $\mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{\text {(aq) }}^{-}$ |
$(2)$ Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}_{(\text {aq })}^{-}$ |
$(3)$ Hydrocyanic acid $(HCN)$ | $\mathrm{HCN}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{CN}_{(\text {aq })}^{-}$ |
$(4)$ Formic acid ($HCOOH$) | $\mathrm{HCOOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{HCOO}_{\text {(aq) }}^{-}$ |
$(5)$ Hypochlorous acid $(HOCl)$ | $\mathrm{HOCl}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{OCl}_{\text {(aq) }}^{-}+\mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+} \text {etc. }$ |
$(B)$ Weak Bases | Ionic Equilibriums |
$(1)$ Ammonia $\left(\mathrm{NH}_{3}\right)$ | $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})^{-}}^{-}$ |
$(2)$ Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$ |
$(3)$ Hydrazine $\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right)$ | $\mathrm{NH}_{2} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{NH}_{2} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}$ |
$(4)$ Methyl Amine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ | $\mathrm{CH}_{3} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{CH}_{3} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$ |
$(5)$ Dimethyl Amine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ | $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}\right)$etc. |
Derive the equation of relation between weak base ionization constant ${K_b}$ and its conjugate acid ionization constant ${K_a}$
Given
$(i)$ $\begin{gathered}
HCN\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons {H_3}{O^ + }\left( {aq} \right) + C{N^ - }\left( {aq} \right) \hfill \\
{K_a} = 6.2 \times {10^{ - 10}} \hfill \\
\end{gathered} $
$(ii)$ $\begin{gathered}
C{N^ - }\left( {aq} \right) + {H_2}O\left( l \right) \rightleftharpoons HCN\left( {aq} \right) + O{H^ - }\left( {aq} \right) \hfill \\
{K_b} = 1.6 \times {10^{ - 5}} \hfill \\
\end{gathered} $
These equilibria show the following order of the relative base strength
The ionization constant of dimethylamine is $5.4 \times 10^{-4}$. Calculate its degree of ionization in its $0.02$ $M$ solution. What percentage of dimethylamine is ionized if the solution is also $0.1 \,M$ in $NaOH ?$
At $298$ $K$ temperature, the ${K_b}$ of ${\left( {C{H_3}} \right)_2}NH$ is $5.4 \times {10^{ - 4}}$ $0.25$ $M$ solution.
The $pH $ of a $0.01\,M$ solution of acetic acid having degree of dissociation $12.5\%$ is