Write examples of weak acids and weak bases and give ionic equilibrium in its aqueous solution.
$(A)$ Weak Acids | Ionic Equilibriums |
$(1)$ Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ | $\mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{\text {(aq) }}^{-}$ |
$(2)$ Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}_{(\text {aq })}^{-}$ |
$(3)$ Hydrocyanic acid $(HCN)$ | $\mathrm{HCN}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{CN}_{(\text {aq })}^{-}$ |
$(4)$ Formic acid ($HCOOH$) | $\mathrm{HCOOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{HCOO}_{\text {(aq) }}^{-}$ |
$(5)$ Hypochlorous acid $(HOCl)$ | $\mathrm{HOCl}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{OCl}_{\text {(aq) }}^{-}+\mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+} \text {etc. }$ |
$(B)$ Weak Bases | Ionic Equilibriums |
$(1)$ Ammonia $\left(\mathrm{NH}_{3}\right)$ | $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})^{-}}^{-}$ |
$(2)$ Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$ |
$(3)$ Hydrazine $\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right)$ | $\mathrm{NH}_{2} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{NH}_{2} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}$ |
$(4)$ Methyl Amine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ | $\mathrm{CH}_{3} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{CH}_{3} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$ |
$(5)$ Dimethyl Amine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ | $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}\right)$etc. |
Determine the degree of ionization and $pH$ of a $0.05 \,M$ of ammonia solution. The ionization constant of ammonia can be taken from Table $7.7 .$ Also, calculate the ionization constant of the conjugate acid of ammonia.
Dissociation constant for a monobasic acid is $10^{-4}$ . What is the $pH$ of the monobasic acid ? (If $\%$ dissociation $= 2\,\%$ )
Assuming that the degree of hydrolysis is small, the $pH$ of $0.1\, M$ solution of sodium acetate $(K_a\, = 1.0\times10^{- 5})$ will be
A $0.1\, M$ solution of $HF$ is $1\%$ ionized. What is the $K_a$
In aqueous solution the ionization constants for carbonic acid are
$K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$
Select the correct statement for a saturated $0.034\, M$ solution of the carbonic acid.