Write examples of weak acids and weak bases and give ionic equilibrium in its aqueous solution.

Vedclass pdf generator app on play store
Vedclass iOS app on app store
$(A)$ Weak Acids Ionic Equilibriums
$(1)$ Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ $\mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{CH}_{3} \mathrm{COO}_{\text {(aq) }}^{-}$
$(2)$ Benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{(\text {aq })}^{+}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}_{(\text {aq })}^{-}$
$(3)$ Hydrocyanic acid $(HCN)$ $\mathrm{HCN}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{CN}_{(\text {aq })}^{-}$
$(4)$ Formic acid ($HCOOH$) $\mathrm{HCOOH}_{(\text {aq })}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+}+\mathrm{HCOO}_{\text {(aq) }}^{-}$
$(5)$ Hypochlorous acid $(HOCl)$ $\mathrm{HOCl}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{OCl}_{\text {(aq) }}^{-}+\mathrm{H}_{3} \mathrm{O}_{\text {(aq) }}^{+} \text {etc. }$

 

$(B)$ Weak Bases Ionic Equilibriums
$(1)$ Ammonia $\left(\mathrm{NH}_{3}\right)$ $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})^{-}}^{-}$
$(2)$ Aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
$(3)$ Hydrazine $\left(\mathrm{NH}_{2} \mathrm{NH}_{2}\right)$ $\mathrm{NH}_{2} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{NH}_{2} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}$
$(4)$ Methyl Amine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$ $\mathrm{CH}_{3} \mathrm{NH}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square \mathrm{CH}_{3} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
$(5)$ Dimethyl Amine $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(l)} \square\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{3(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}\right)$etc.

Similar Questions

A solution of sodium borate has a $pH$ of approximately

Derive ${K_a} \times {K_b} = {K_w}$ equation.

When $CO_2$ dissolves in water, the following equilibrium is established

$C{O_2} + 2{H_2}O\, \rightleftharpoons {H_3}{O^ + } + HCO_3^ - $

for which the equilibrium constant is $3.8 \times 10^{-7}$ and $pH = 6.0$. The ratio of  $[HCO_3^- ]$ to $[CO_2]$ would be :-

The hydrogen ion concentration of $0.1\,N$ solution of $C{H_3}COOH,$ which is $30\%$ dissociated, is

Calculate $pH$ of $0.02$ $mL$ $ClC{H_2}COOH$. Its ${K_a} = 1.36 \times {10^{ - 3}}$ calculate its $pK_{b}$,