$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$
$-\frac{1}{8}$
$\frac{1}{16}$
$\frac{1}{8}$
None
Show that
$\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
The value of ${\cos ^2}\,{10^o}\,\, - \,\cos \,\,{10^o}\,\cos \,\,{50^o}\, + \,{\cos ^2}\,{50^o}$ is
If $\sin A + \cos A = \sqrt 2 ,$ then ${\cos ^2}A = $
If $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ then $\cos 2A = $