$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$
$-\frac{1}{8}$
$\frac{1}{16}$
$\frac{1}{8}$
None
If $\alpha $ is a root of $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $, then $\sin 2\alpha $ is equal to
$\cos A + \cos (240^\circ + A) + \cos (240^\circ - A) = $
If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always
If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to
$\cos \frac{\pi }{5}\cos \frac{{2\pi }}{5}\cos \frac{{4\pi }}{5}\cos \frac{{8\pi }}{5} = $