If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then

  • A

    $\tan A\,\tan B > 1$

  • B

    $\tan A\,\tan B < 1$

  • C

    $\tan A\,\,\tan B = 1$

  • D

    None of these

Similar Questions

If $\alpha + \beta + \gamma = 2\pi ,$ then

  • [IIT 1979]

$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $

If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$

$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$

and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then

$2{\cos ^2}\theta - 2{\sin ^2}\theta = 1$, then $\theta  =$ .......$^o$

If $\sin x + \cos x = \frac{1}{5},$ then $\tan 2x$ is