If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then
$\tan A\,\tan B > 1$
$\tan A\,\tan B < 1$
$\tan A\,\,\tan B = 1$
None of these
For $A = 133^\circ ,\;2\cos \frac{A}{2}$ is equal to
If $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ then $(\alpha ,\beta ) = $
In triangle $ABC$, the value of $\sin 2A + \sin 2B + \sin 2C$ is equal to
For any $\theta \, \in \,\left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$, the expression $3\,{\left( {\sin \,\theta - \cos \,\theta } \right)^4} + 6{\left( {\sin \,\theta + \cos \,\theta } \right)^2} + 4\,{\sin ^6}\,\theta $ equals
If $\tan A = \frac{{1 - \cos B}}{{\sin B}},$ find $\tan 2A$ in terms of $\tan B$ and show that