If $A + B + C = \pi \,(A,B,C > 0)$ and the angle $C$ is obtuse then
$\tan A\,\tan B > 1$
$\tan A\,\tan B < 1$
$\tan A\,\,\tan B = 1$
None of these
If $\alpha + \beta + \gamma = 2\pi ,$ then
$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $
If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then
$2{\cos ^2}\theta - 2{\sin ^2}\theta = 1$, then $\theta =$ .......$^o$
If $\sin x + \cos x = \frac{1}{5},$ then $\tan 2x$ is