$A$ & $B$ are blocks of same mass $m$ exactly equivalent to each other. Both are placed on frictionless surface connected by one spring. Natural length of spring is $L$ and force constant $K$. Initially spring is in natural length. Another equivalent block $C$ of mass $m$ travelling at speed $v$ along line joining $A$ & $B$ collide with $A$. In ideal condition maximum compression of spring is :-
$v \sqrt[]{\frac{m}{2K}}$
$ m \sqrt[]{\frac{v}{2K}}$
$\sqrt{\frac{mv}{K}}$
$\frac{mv}{2K}$
The kinetic energy $K$ of a particle moving along a circle of radius $R$ depends upon the distance $s$ as $K = as^2$. The force acting on the particle is
A particle of mass $m$ is moving in a circular path of constant radius $r$ such that its centripetal acceleration $ac$ is varying with time t as $a_c = k^2rt^2$ where $k$ is a constant. The power delivered to the particle by the force acting on it
A ball moving with velocity $2\, m/s$ collides head on with another stationary ball of double the mass. If the coefficient of restitution is $0.5$, then their velocities (in $m/s$) after collision will be
A $15\, g$ ball is shot from a spring gun whose spring has a force constant of $600\, N\, m$. The spring is compressed by $3\, cm$. The greatest possible velocity of the ball for this compression is ............. $\mathrm{m}/ \mathrm{s}$ $(g = 10\, m/s^2$)
Answer carefully, with reasons :
$(a)$ In an elastic collision of two billiard balls, is the total kinetic energy conserved during the short time of collision of the balls (i.e. when they are in contact) ?
$(b)$ Is the total linear momentum conserved during the short time of an elastic collision of two balls ?
$(c)$ What are the answers to $(a)$ and $(b)$ for an inelastic collision ?
$(d)$ If the potential energy of two billiard balls depends only on the separation distance between their centres, is the collision elastic or inelastic ?
(Note, we are talking here of potential energy corresponding to the force during collision, not gravitational potential energy).