Gujarati
Hindi
5.Work, Energy, Power and Collision
normal

$A$ & $B$ are blocks of same mass $m$ exactly equivalent to each other. Both are  placed on frictionless surface connected by one spring. Natural length of spring is $L$  and force constant $K$. Initially spring is in natural length. Another equivalent block $C$  of mass $m$ travelling at speed $v$ along line joining $A$ & $B$ collide with $A$. In  ideal condition maximum compression of spring is :-

A

$v \sqrt[]{\frac{m}{2K}}$

B

$ m \sqrt[]{\frac{v}{2K}}$

C

$\sqrt{\frac{mv}{K}}$

D

$\frac{mv}{2K}$

Solution

Just after collision $\mathrm{C}$ will stop $\&$. $A$ stant moving at speed $v$

Now apply conservation of momentum for $\mathrm{A} . \mathrm{B}$ system

${m v+0=(m+m) V'} $

${V'=\frac{v}{2}}$

Now apply energy balance method

$\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2}(\mathrm{m}+\mathrm{m}) \mathrm{V}^{2}+\frac{1}{2} \mathrm{Kx}_{\max }^{2}$

$\frac{1}{2} m v^{2}=\frac{1}{2} \times 2 m \cdot \frac{v^{2}}{4}+\frac{1}{2} K x^{2} \max$

$\frac{1}{4} \mathrm{mv}^{2}=\frac{1}{2} \mathrm{Kx}_{\max }^{2}$

$\mathrm{x}_{\max }=\mathrm{v} \sqrt{\frac{\mathrm{m}}{2 \mathrm{K}}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.