The charge $q$  on a capacitor varies with voltage as shown in figure. The area of the triangle $AOB $ represents

829-53

  • A

    electric field between the plates

  • B

    electric flux between the plates

  • C

    energy density

  • D

    energy stored by the capacitor

Similar Questions

How much electric flux will come out through a surface $S = 10\hat j$ kept in an electrostatic field $\vec E = 2\hat i + 4\hat j + 7\hat k$.........$units$

What will be the total flux through the faces of the cube as in figure with side of length $a$ if a charge $q$ is placed at ?

$(a)$ $A$ $:$ a corner of the cube.

$(b)$ $B$ $:$ midpoint of an edge of the cube.

Given below are two statements:

Statement $I :$ An electric dipole is placed at the centre of a hollow sphere. The flux of electric field through the sphere is zero but the electric field is not zero anywhere in the sphere.

Statement $II :$ If $R$ is the radius of a solid metallic sphere and $Q$ be the total charge on it. The electric field at any point on the spherical surface of radius $r ( < R )$ is zero but the electric flux passing through this closed spherical surface of radius $r$ is not zero.

In the light of the above statements, choose the correct answer from the options given below:

  • [JEE MAIN 2021]

A point charge causes an electric flux of $-1.0 \times 10^{3}\; N\;m ^{2} / C$ to pass through a spherical Gaussian surface of $10.0\; cm$ radius centred on the charge.

$(a)$ If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?

$(b)$ What is the value of the point charge?

The spatial distribution of the electric field due to charges $(A, B)$ is shown in figure.  Which one of the following statements is correct