An ellipsoidal cavity is carved within a perfect conductor. A positive charge $q$ is placed at the centre of the cavity. The points $A$ and $B$ are on the cavity surface as shown in the figure. Then

115-10

  • [IIT 1999]
  • A

    Electric field near $A$ in the cavity = Electric field near $B$ in the cavity

  • B

    Total electric field flux through the surface of the cavity is $q/{\varepsilon _0}$

  • C

    Potential at $A = $ Potential at $B$

  • D

    Both $(b)$ and $(c)$

Similar Questions

Eight dipoles of charges of magnitude $e$ are placed inside a cube. The total electric flux coming out of the cube will be

An infinite, uniformly charged sheet with surface charge density $\sigma$ cuts through a spherical Gaussian surface of radius $R$ at a distance $x$ from its center, as shown in the figure. The electric flux $\Phi $ through the Gaussian surface is

The circular wire in figure below encircles solenoid in which the magnetic flux is increasing at a constant rate out of the plane of the page. The clockwise emf around the circular loop is $\varepsilon_{0}$. By definition a voltammeter measures the voltage difference between the two points given by $V_{b}-V_{a}=-\int \limits_{a}^{b} E \cdot d s$ We assume that $a$ and $b$ are infinitesimally close to each other. The values of $V_{b}-V_{a}$ along the path $1$ and $V_{a}-V_{b}$ along the path $2$ , respectively are

  • [KVPY 2020]

${q_1},\;{q_2},\;{q_3}$ and ${q_4}$ are point charges located at points as shown in the figure and $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true according to the Gauss’s law

$\mathrm{C}_1$ and $\mathrm{C}_2$ are two hollow concentric cubes enclosing charges $2 Q$ and $3 Q$ respectively as shown in figure. The ratio of electric flux passing through $\mathrm{C}_1$ and $\mathrm{C}_2$ is :

  • [JEE MAIN 2024]