$A + 2B \to C$, the rate equation for this reaction is given as Rate $= K[A][B]$ . If the concentration of $A$ is kept the same but that of $B$ is doubled what will happen to the rate it self ?

  • [JEE MAIN 2015]
  • A

    halved

  • B

    the same

  • C

    doubled

  • D

    quadrupled

Similar Questions

From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.

$(i)$ $3 NO ( g ) \rightarrow N _{2} O$ $(g)$ Rate $=k[ NO ]^{2}$

If doubling the initial concentration of reactant doubles $t_{1/2}$ of reaction, the order of reaction is

Write unit of rate constant of following reaction :

$1.$ zero order

$2.$ second order

The experimental data for decomposition of $N _{2} O _{5}$

$\left[2 N _{2} O _{5} \rightarrow 4 NO _{2}+ O _{2}\right]$

in gas phase at $318 \,K$ are given below:

$t/s$ $0$ $400$ $800$ $1200$ $1600$ $2000$ $2400$ $2800$ $3200$
${10^2} \times \left[ {{N_2}{O_5}} \right]/mol\,\,{L^{ - 1}}$ $1.63$ $1.36$ $1.14$ $0.93$ $0.78$ $0.64$ $0.53$ $0.43$ $0.35$

$(i)$ Plot $\left[ N _{2} O _{5}\right]$ against $t$

$(ii)$ Find the half-life period for the reaction.

$(iii)$ Draw a graph between $\log \left[ N _{2} O _{5}\right]$ and $t$

$(iv)$ What is the rate law $?$

$(v)$ Calculate the rate constant.

$(vi)$ Calculate the half-life period from $k$ and compare it with $(ii)$.

Diazonium salt decomposes as ${C_6}{H_5}N_2^ + C{l^ - } \to {C_6}{H_5}Cl + {N_2}$ At ${0\,^o}C$, the evolution of ${N_2}$ becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is