1.Units, Dimensions and Measurement
hard

$N$ divisions on the main scale of a vernier calliper coincide with $(N + 1 )$ divisions of the vernier scale. If each division of main scale is $a$ units , then the least count of the instrument is

A

$a$

B

$\frac {a}{N}$

C

$\frac{N}{{N + 1}} \times a$

D

$\frac{a}{{N + 1}}$

(AIEEE-2012)

Solution

$\begin{array}{l}
No\,of\,divisions\,on\,main\,scale\, = N\\
No\,of\,divisions\,on\,vernier\,scale\, = N + 1\\
Size\,of\,main\,scale\,divisions\, = a\\
Let\,size\,of\,vernier\,scale\,division\,be\,b\,then\,we\,have\\
aN = b\,\left( {N + 1} \right) \Rightarrow b = \frac{{aN}}{{N + 1}}\\
Least\,count\,is\,a – b = a – \frac{{aN}}{{N + 1}}\\
 = a\left[ {\frac{{N + 1 – N}}{{N + 1}}} \right] = \frac{a}{{N + 1}}
\end{array}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.