$p{K_a}$ of a weak acid is defined as
$log_{10}{K_a}$
$\frac{1}{{lo{g_{10}}{K_a}}}$
$log _{10}\frac{1}{{{K_a}}}$
$-log_{10}\frac{1}{{{K_a}}}$
The $pH$ of $ 0.1 \,M$ solution of a weak monoprotic acid $1\%$ ionized is
The first ionization constant of $H _{2} S$ is $9.1 \times 10^{-8}$. Calculate the concentration of $HS ^{-}$ ion in its $0.1 \,M$ solution. How will this concentration be affected if the solution is $0.1\, M$ in $HCl$ also? If the second dissociation constant of $H _{2} S$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.
The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-4}$. The $\mathrm{pH}$ of a $0.01 \ \mathrm{M}$ solution of its sodium salt is
Which of the following base is weakest
The ${K_b}$ of ammonia is $1.8 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate the $pH$ of $0.1$ $M$ solution.