Ionic product of water at $310 \,K$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?
Ionic product, $K_{w}=\left[ H ^{+}\right]\left[ OH ^{-}\right]$
Let $\left[ H ^{+}\right]=x$
Since $\left[ H ^{+}\right]=\left[ OH ^{-}\right], K_{ w }=x^{2}$
$\Rightarrow K_{ w }$ at $310 \,K$ is $2.7 \times 10^{-14}$.
$\therefore 2.7 \times 10^{-14}=x^{2}$
$\Rightarrow x=1.64 \times 10^{-7}$
$\Rightarrow\left[ H ^{+}\right]=1.64 \times 10^{-7}$
$\Rightarrow pH =-\log \left[ H ^{+}\right]$
$=-\log \left[1.64 \times 10^{-7}\right]$
$=6.78$
Hence, the $pH$ of neutral water is $6.78$
Explain a general step-wise approach to evaluate the $pH$ of the weak electrolyte.
The $pH$ of $0.1$ $M$ $HCN$ solution is $5.2$ calculate ${K_a}$ of this solution.
The $pH$ of the solution obtained on neutralisation of $40\, mL\, 0.1\, M\, NaOH$ with $40\, mL\, 0.1\, M\, CH_3COOH$ is
If $pK_a =\, -\,log K_a=4$ for a weak acid $HX$ and $K_a= C\alpha ^2$ then Van't Haff factor when $C = 0.01\,M$ is
$K_b$ for $NH_4OH$ is $1.8\times 10^{-5}.$ The $[\mathop O\limits^\Theta H]$ of $0.1\,M\,NH_4OH$ is