Ionic product of water at $310 \,K$ is $2.7 \times 10^{-14}$. What is the $\mathrm{pH}$ of neutral water at this temperature?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Ionic product,  $K_{w}=\left[ H ^{+}\right]\left[ OH ^{-}\right]$

Let $\left[ H ^{+}\right]=x$

Since $\left[ H ^{+}\right]=\left[ OH ^{-}\right], K_{ w }=x^{2}$

$\Rightarrow K_{ w }$ at $310 \,K$ is $2.7 \times 10^{-14}$.

$\therefore 2.7 \times 10^{-14}=x^{2}$

$\Rightarrow x=1.64 \times 10^{-7}$

$\Rightarrow\left[ H ^{+}\right]=1.64 \times 10^{-7}$

$\Rightarrow pH =-\log \left[ H ^{+}\right]$

$=-\log \left[1.64 \times 10^{-7}\right]$

$=6.78$

Hence, the $pH$ of neutral water is $6.78$

Similar Questions

A $0.1\, M$ solution of $HF$ is $1\%$ ionized. What is the $K_a$

$0.01\, M \,HA(aq.)$ is $2\%$ ionized, $[OH^-]$ of solution is :-

Calculate the $pH$ of a $0.10 \,M$ ammonia solution. Calculate the pH after $50.0 \,mL$ of this solution is treated with $25.0 \,mL$ of $0.10 \,M$ $HCl$. The dissociation constant of ammonia, $K_{b}=1.77 \times 10^{-5}$

${K_b}$ of $N{H_4}OH = 1.8 \times {10^{ - 5}}$ calculate $pH$ of $0.15$ $mol$ $N{H_4}OH$ and $0.25$ $mol$ $N{H_4}OH$ containing solution.

The ${K_b}$ of ammonia is $1.8 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate the $pH$ of $0.1$ $M$ solution.