$2\, gm$ acetic acid and $3\, gm$ sodium acetate are present in $100\, ml$. aqueous solution then what will be the $pH$ of solution if ionisation constant of acetic acid is $1.8 \times 10^{-5}$
$3.7$
$4.98$
$4.78$
$4.08$
Derive ${K_w} = {K_a} \times {K_b}$ and ${K_w} = p{K_a} \times p{K_b}$ for weak base $B$ and its conjugate acid ${B{H^ + }}$.
In aqueous solution the ionization constants for carbonic acid are
$K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$
Select the correct statement for a saturated $0.034\, M$ solution of the carbonic acid.
The concentration of $[{H^ + }]$ and concentration of $[O{H^ - }]$ of a $ 0.1$ aqueous solution of $2\%$ ionised weak acid is [Ionic product of water $ = 1 \times {10^{ - 14}}]$
The $pH$ of a $0.1\ M$ aqueous solution of a very weak acid $(HA)$ is $3$. What is its degree of dissociation ?......$\%$
Which of the following will occur if a $0.1 \,M$ solution of a weak acid is diluted to $0.01\,M$ at constant temperature