$2\, gm$ acetic acid and $3\, gm$ sodium acetate are present in $100\, ml$. aqueous solution then what will be the $pH$ of solution if ionisation constant of acetic acid is $1.8 \times 10^{-5}$
$3.7$
$4.98$
$4.78$
$4.08$
The $pH$ of $0.1$ $M$ solution of cyanic acid $(HCNO)$ is $2.34$. Calculate the ionization constant of the acid and its degree of ionization in the solution.
Calculate $\left[ {{S^{ - 2}}} \right]$ and $\left[ {H{S^{ - 2}}} \right]$ of the solution which contain$0.1$ $M$ ${H_2}S$ and $0.3$ $M$ $HCl$.
[ ${H_2}S$ of ${K_a}\left( 1 \right) = 1.0 \times {10^{ - 7}}$ and ${K_a}\left( 2 \right) = 1.3 \times {10^{ - 13}}$ ]
Derive the equation of ionization constant $({K_b})$ of weak base.
Dissociation constat of weak acid $HA$ is $1.8 \times {10^{ - 4}}$ calculate Dissociation constant of its conjugate base ${A^ - }$
Assuming that the degree of hydrolysis is small, the $pH$ of $0.1\, M$ solution of sodium acetate $(K_a\, = 1.0\times10^{- 5})$ will be