The concentration of $[{H^ + }]$ and concentration of $[O{H^ - }]$ of a $ 0.1$ aqueous solution of $2\%$ ionised weak acid is [Ionic product of water $ = 1 \times {10^{ - 14}}]$
$2 \times {10^{ - 3}}$ $M$ and $5 \times {10^{ - 12}}$ $M$
$1 \times {10^3}\;M\;{\rm{and}}\;3 \times {10^{ - 11}}M$
$0.02 \times {10^{ - 3}}\;M\;{\rm{and}}\;5 \times {10^{ - 11}}M$
$3 \times {10^{ - 2}}\;M\;{\rm{and}}\;4 \times {10^{ - 13}}M$
The $pH$ of a $0.1\ M$ aqueous solution of a very weak acid $(HA)$ is $3$. What is its degree of dissociation ?......$\%$
If degree of ionisation is $0.01$ of decimolar solution of weak acid $HA$ then $pKa$ of acid is
Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)
The $pH$ of the solution obtained on neutralisation of $40\, mL\, 0.1\, M\, NaOH$ with $40\, mL\, 0.1\, M\, CH_3COOH$ is
What is the dissociation constant for $NH_4OH$ if at a given temperature its $0.1\,N$ solution has $pH = 11.27$ and the ionic product of water is $7.1 \times 10^{-15}$ (antilog $0.73 = 5.37$ )