The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its $0.05\, M$ solution and also its $pH$. What will be its degree of ionization if the solution is $0.01$ $M$ in $HCl$ also?
Let the degree of ionization of propanoic acid be $a$.
Then, representing propionic acid as $HA$, we have:
$HA\quad + \quad {H_2}O\quad \leftrightarrow \quad {H_3}{O^ + }\quad + \quad {A^ - }$
$(.05-0.0 \alpha) \approx .05$ $.05 \alpha$ $.05 \alpha$
$K_{a}=\frac{\left[ H _{3} O ^{+}\right]\left[ A ^{-}\right]}{[ HA ]}$
$=\frac{(.05 \alpha)(.05 \alpha)}{0.05}=.05 \alpha^{2}$
$\alpha=\sqrt{\frac{K_{d}}{.05}}=1.63 \times 10^{-2}$
Then, $\left[ H _{3} O ^{+}\right]=.05 \alpha=.05 \times 1.63 \times 10^{-2}=K_{b} .15 \times 10^{-4} \,M$
$\therefore pH =3.09$
In the presence of $0.1 \,M$ of $HCl$, let $a'$ be the degree of ionization.
Then, $\left[ H _{3} O ^{+}\right]=0.01$
$\left[ A ^{-}\right]=005 \alpha^{\prime}$
$[ HA ]=.05$
$K_{a}=\frac{0.01 \times .05 \alpha^{\prime}}{.05}$
$1.32 \times 10^{-5}=.01 \times \alpha^{\prime}$
$\alpha^{\prime}=1.32 \times 10^{-3}$
A solution of sodium borate has a $pH$ of approximately
Derive the equation of relation between weak base ionization constant ${K_b}$ and its conjugate acid ionization constant ${K_a}$
If the $pKa$ of lactic acid is $5$,then the $pH$ of $0.005$ $M$ calcium lactate solution at $25^{\circ}\,C$ is $........\times 10^{-1}$ (Nearest integer)
Accumulation of lactic acid $(HC_3H_5O_3),$ a monobasic acid in tissues leads to pain and a feeling of fatigue. In a $0.10\, M$ aqueous solution, lactic acid is $3.7\%$ dissociates. The value of dissociation constant, $K_a,$ for this acid will be
Write characteristic and uses of weak base equilibrium constant ${K_b}$.