The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its $0.05\, M$ solution and also its $pH$. What will be its degree of ionization if the solution is $0.01$ $M$ in $HCl$ also?
Let the degree of ionization of propanoic acid be $a$.
Then, representing propionic acid as $HA$, we have:
$HA\quad + \quad {H_2}O\quad \leftrightarrow \quad {H_3}{O^ + }\quad + \quad {A^ - }$
$(.05-0.0 \alpha) \approx .05$ $.05 \alpha$ $.05 \alpha$
$K_{a}=\frac{\left[ H _{3} O ^{+}\right]\left[ A ^{-}\right]}{[ HA ]}$
$=\frac{(.05 \alpha)(.05 \alpha)}{0.05}=.05 \alpha^{2}$
$\alpha=\sqrt{\frac{K_{d}}{.05}}=1.63 \times 10^{-2}$
Then, $\left[ H _{3} O ^{+}\right]=.05 \alpha=.05 \times 1.63 \times 10^{-2}=K_{b} .15 \times 10^{-4} \,M$
$\therefore pH =3.09$
In the presence of $0.1 \,M$ of $HCl$, let $a'$ be the degree of ionization.
Then, $\left[ H _{3} O ^{+}\right]=0.01$
$\left[ A ^{-}\right]=005 \alpha^{\prime}$
$[ HA ]=.05$
$K_{a}=\frac{0.01 \times .05 \alpha^{\prime}}{.05}$
$1.32 \times 10^{-5}=.01 \times \alpha^{\prime}$
$\alpha^{\prime}=1.32 \times 10^{-3}$
For a concentrated solution of a weak electrolyte ( $K _{ eq }=$ equilibrium constant) $A _2 B _3$ of concentration ' $c$ ', the degree of dissociation " $\alpha$ ' is
Which among the given acids has lowest $pKa$ value
$pH$ of an aqueous solution $H_2CO_3$ is $3.3$. If ${K_{{a_1}}} = {10^{ - 3}}$and ${K_{{a_2}}} = {10^{ - 13}}$ then $[HCO_3^-]$ is
It has been found that the $pH$ of a $0.01$ $M$ solution of an organic acid is $4.15 .$ Calculate the concentration of the anion, the ionization constant of the acid and its $p{K_a}$
What concentration of $Ac^-$ ions will reduce $H_3O^+$ ion to $2 × 10^{-4}\ M$ in $0.40\ M$ solution of $HAc$ ? $K_a (HAc) = 1.8 × 10^{-5}$ ?