$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right],$ then show that $|3 A|=27|A|$.
The given matrix is $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$
It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $(C_1 )$ for easier calculation.
$|A|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$
$\therefore 27|A|=27(4)=108......(i)$
${{\text{Now, }}3A = 3\left[ {\begin{array}{*{20}{l}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]}$
${\therefore \,|3A| = 3\left| {\begin{array}{*{20}{l}}
3&6 \\
0&{12}
\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}
0&3 \\
0&{12}
\end{array}} \right| + 0\left| {\begin{array}{*{20}{l}}
0&3 \\
3&6
\end{array}} \right|}$
${\begin{array}{*{20}{l}}
{ = 3(36 - 0) = 3(36) = 108}
\end{array}}......(ii)$
From equations $( i )$ and $(ii)$, we have:
$|3 A|=27|A|$
Hence, the given result is proved.
If $A = \left[ {\begin{array}{*{20}{c}}
1&1\\
1&1
\end{array}} \right]$ and $\det ({A^n} - I) = 1 - {\lambda ^n}\,,\,n \in N$ then $\lambda $ is
The value of $\lambda$ and $\mu$ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ has no solution, are :
If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$
If $\alpha+\beta+\gamma=2 \pi$, then the system of equations
$x+(\cos \gamma) y+(\cos \beta) z=0$
$(\cos \gamma) x+y+(\cos \alpha) z=0$
$(\cos \beta) x+(\cos \alpha) y+z=0$
has :
Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.