$A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right],$ then show that $|3 A|=27|A|$.
The given matrix is $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{array}\right]$
It can be observed that in the first column, two entries are zero. Thus, we expand along the first column $(C_1 )$ for easier calculation.
$|A|=1\left|\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right|-0\left|\begin{array}{ll}0 & 1 \\ 0 & 4\end{array}\right|+0\left|\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right|=1(4-0)-0+0=4$
$\therefore 27|A|=27(4)=108......(i)$
${{\text{Now, }}3A = 3\left[ {\begin{array}{*{20}{l}}
1&0&1 \\
0&1&2 \\
0&0&4
\end{array}} \right] = \left[ {\begin{array}{*{20}{l}}
3&0&3 \\
0&3&6 \\
0&0&{12}
\end{array}} \right]}$
${\therefore \,|3A| = 3\left| {\begin{array}{*{20}{l}}
3&6 \\
0&{12}
\end{array}} \right| - 0\left| {\begin{array}{*{20}{l}}
0&3 \\
0&{12}
\end{array}} \right| + 0\left| {\begin{array}{*{20}{l}}
0&3 \\
3&6
\end{array}} \right|}$
${\begin{array}{*{20}{l}}
{ = 3(36 - 0) = 3(36) = 108}
\end{array}}......(ii)$
From equations $( i )$ and $(ii)$, we have:
$|3 A|=27|A|$
Hence, the given result is proved.
$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $
Three digit numbers $x17, 3y6$ and $12z$ where $x, y, z$ are integers from $0$ to $9$, are divisible by a fixed constant $k$. Then the determinant $\left| {\,\begin{array}{*{20}{c}}x&3&1\\7&6&z\\1&y&2\end{array}\,} \right|$ + $48$ must be divisible by
Let $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is
Let $[.]$ , $ \{.\} $ and $sgn$$(.)$ denotes greatest integer function, fractional part function and signum function respectively, then value of determinant
$\left| {\begin{array}{*{20}{c}}
{\left[ \pi \right]}&{amp(1 + i\sqrt 3 )}&1 \\
1&0&2 \\
{\operatorname{sgn} ({{\cot }^{ - 1}}x)}&1&{\{ \pi \} }
\end{array}} \right|$ is-
Find area of the triangle with vertices at the point given in each of the following: $(1,0),(6,0),(4,3)$