A charged oil drop is suspended in a uniform field of $3 \times$ $10^{4} V / m$ so that it neither falls nor rises. The charge on the drop will be $.....\times 10^{-18}\; C$
(take the mass of the charge $=9.9 \times 10^{-15} kg$ and $g=10 m / s ^{2}$ )
$3.3$
$3.2$
$1.6$
$4.8$
The charge distribution along the semi-circular arc is non-uniform . Charge per unit length $\lambda $ is given as $\lambda = {\lambda _0}\sin \theta $ , with $\theta $ measured as shown in figure. $\lambda_0$ is a positive constant. The radius of arc is $R$ . The electric field at the center $P$ of semi-circular arc is $E_1$ . The value of $\frac{{{\lambda _0}}}{{{ \in _0}{E_1}R}}$ is
Two point charges $q_{1}$ and $q_{2},$ of magnitude $+10^{-8} \;C$ and $-10^{-8}\; C ,$ respectively, are placed $0.1 \;m$ apart. Calculate the electric fields at points $A, B$ and $C$ shown in Figure
Suppose a uniformly charged wall provides a uniform electric field of $2 \times 10^4 \mathrm{~N} / \mathrm{C}$ normally. A charged particle of mass $2 \mathrm{~g}$ being suspended through a silk thread of length $20 \mathrm{~cm}$ and remain stayed at a distance of $10 \mathrm{~cm}$ from the wall. Then the charge on the particle will be $\frac{1}{\sqrt{\mathrm{x}}} \ \mu \mathrm{C}$ where $\mathrm{x}=$ ____________. use $g=10 \mathrm{~m} / \mathrm{s}^2$ ]
Two point charges of $20\,\mu \,C$ and $80\,\mu \,C$ are $10\,cm$ apart. Where will the electric field strength be zero on the line joining the charges from $20\,\mu \,C$ charge......$m$
Mention characteristics of electric field.