જો $A$ અને $B$ બે ઘટનાઓ છે કે જેથી $P\,(A \cup B) = P\,(A \cap B),$ તો સાચો સંબંધ મેળવો.
ચકાસો કે નીચેની સંભાવનાઓ $P(A)$ અને $P(B)$ સુસંગત રીતે વ્યાખ્યાયિત છે.
$P ( A )=0.5$, $ P ( B )=0.7$, $P ( A \cap B )=0.6$
ત્રણ સિક્કાઓને એકસાથે ઉછાળવામાં આવે છે. ધારો કે ઘટના $E$ 'ત્રણ છાપ અથવા ત્રણ કાંટા', ઘટના $F$ 'ઓછામાં ઓછી બે છાપ' અને ઘટના $G$ 'વધુમાં વધુ બે છાપ.' મળે તેમ દર્શાવે છે. જોડ $(E, F), (E, G)$ અને $(F, G)$ પૈકી કઈ ઘટનાઓની જોડ નિરપેક્ષ ઘટનાઓની જોડ છે ? કઈ ઘટનાઓની જોડ અવલંબી છે ?
ઘટના $A$ અને $B$ છે. ઓછામાં એક ઘટના બને તેની સંભાવના $0.6,$ બન્ને ઘટના બને તેની સંભાવના $0.2$ છે. તો $P(A) + P(B)= …....$
આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ નિરપેક્ષ હોય તો $p$ માં શોધો.