જો $A$ અને $B$ એ ઘટના છે કે જેથી $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ તો $P(\bar A \cap B)$ મેળવો.
આપેલ ઘટનાઓ $A$ અને $B$ માટે $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ અને $\mathrm{P}(\mathrm{B})=p .$ આપેલ છે. જો ઘટનાઓ પરસ્પર નિવારક $p$ માં શોધો.
જો $A$ અને $B$ બે નિરપેક્ષ ઘટનાઓ હોય, તો સાબિત કરો કે $A$ અને $B$ માંથી ઓછામાં ઓછી એક ઘટના ઉદ્ભવવાની સંભાવના $1 -P(A') P(B')$ છે.
એક ખોખામાં $10$ કાળા રંગના અને $8$ લાલ રંગના દડા છે. તે ખોખામાંથી બે દડા યાદચ્છિક રીતે પુરવણી સહિત પસંદ કરવામાં આવે છે. તેમાંનો એક દડો કાળા રંગનો અને અન્ય લાલ રંગનો હોય તેની સંભાવના શોધો.
જો $A$ અને $B$ બે ઘટના છે કે જેથી $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ અને $P(\bar A) = \frac{1}{4},$ કે જ્યાં $\bar A$ એ ઘટના $A$ ની પૂરક ઘટના છે તો ઘટનાઓ $A$ અને $B$ એ . . . થાય .