એક સંસ્થાનાં કમીઓમાંથી $5$ કર્મીઓને વ્યવસ્થા સમિતિ માટે પસંદ કરવામાં આવ્યા છે. આ પાંચ કર્મીઓની વિગતો નીચે દર્શાવેલ છે :

ક્રમ  નામ  જાતિ  ઉંમર (વર્ષમાં)
$1.$ હરીશ  પુ  $30$
$2.$ રોહન  પુ $33$
$3.$ શીતલ  સ્ત્રી  $46$
$4.$ એલિસ સ્ત્રી  $28$
$5.$ સલીમ  પુ $41$
 

આ સમૂહમાંથી પ્રવકતાનાં પદ માટે યાદચ્છિક રીતે એક વ્યક્તિને પસંદ કરવામાં આવી છે. પ્રવક્તા પુરુષ હોય અથવા $35$ વર્ષથી વધારે ઉંમરના હોય તેની સંભાવના શું થશે? ,  

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $E$ be the event in which the spokesperson will be a male and $F$ be the event in which the spokesperson will be over $35$ years of age.

Accordingly, $P ( E )=\frac{3}{5}$ and $P ( F )=\frac{2}{5}$

since there is only one male who is over $35$ years of age,

$P ( E \cap F)=\frac{1}{5}$

We know that $P ( E \cup F)= P ( E )+ P ( F )- P ( E \cap F )$

$\therefore P ( E \cup F )=\frac{3}{5}+\frac{2}{5}-\frac{1}{5}=\frac{4}{5}$

Thus, the probability that the spokesperson will either be a male or over $35$ years of age is $\frac{4}{5}$.

Similar Questions

નારંગીના ખોખામાંથી યાચ્છિક રીતે પુરવણી વગર ત્રણ નારંગી પસંદ કરીને તે ખોખાને તપાસવામાં આવે છે. જો તમામ ત્રણ નારંગીઓ સારી હોય, તો ખોખાના વેચાણ માટે સ્વીકાર કરાય છે, અન્યથા તેનો અસ્વીકાર કરવામાં આવે છે. જો ખોખામાં સમાવિષ્ટ $15$ નારંગી પૈકી $12$ સારી અને $3$ ખરાબ હોય, તો તેને વેચાણ માટે મંજૂરી મળે તેની સંભાવના શોધો.

બે ઘટનાઓ $A$ અને $B$ માટે,$P\,(A \cap B) = $

  • [IIT 1988]

જો $P(A) = \frac{1}{2},\,\,P(B) = \frac{1}{3}\,$   અને$P(A \cap B) = \frac{7}{{12}},$ , તો તેની કિમત $P\,(A' \cap B') = ........$

ત્રણ ઘટનાઓ  $A, B$ અને $C,$ માટે $P($  માત્ર એકજ ઘટના $A$ અથવા $B$ બને $) = P \,($ માત્ર $B$ અથવા $C$ એક્જ બને $)= P \,($ માત્ર $C$ અથવા $A$ એકજ બને $)= p$ અને $P$ (ત્રણેય ઘટનાઓ એક્જ સાથે બને $)  = {p^2},$ કે જ્યાં  $0 < p < 1/2$. તો ત્રણેય ઘટનાઓ $A, B$ અને $C$ પૈકી ઓછામાં ઓછી એક્જ ઘટના બને તેની સંભાવના મેળવો.

  • [IIT 1996]

જો $A$ અને $B$ કોઈ ઘટના હોય તો $P (A \,\,\cup \,\, B) = …….$