વિધાન $I :$ બે બળો $(\overrightarrow{{P}}+\overrightarrow{{Q}})$ અને $(\overrightarrow{{P}}-\overrightarrow{{Q}})$, જ્યાં $\overrightarrow{{P}} \perp \overrightarrow{{Q}}$, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{1}$ ખૂણે હોય ત્યારે તેનું પરિણામી બળ $\sqrt{3\left({P}^{2}+{Q}^{2}\right)}$ મળે, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{2}$ ખૂણે હોય, ત્યારે તેનું પરિણામી $\sqrt{2\left({P}^{2}+{Q}^{2}\right)}$ મળે છે. આ માત્ર $\theta_{1}<\theta_{2}$ માટે શક્ય છે.
વિધાન $II :$ ઉપર આપેલ પરિસ્થિતીમાં $\theta_{1}=60^{\circ}$ અને $\theta_{2}=90^{\circ}$ હોય.
આપેલ વિધાનોમાંથી સૌથી યોગ્ય જવાબ પસંદ કરો.
બે સદીશો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ ને સમાન મૂલ્ય છે. જો $\overrightarrow{ A }+\overrightarrow{ B }$ નું મૂલ્ય (માનાંક) $\overrightarrow{ A }-\overrightarrow{ B }$ ના મૂલ્ય કરતાં બમણું હોય, તો $\overrightarrow{ A }$ અને $\overrightarrow{ B }$ વચ્ચેનો કોણ ...................... થશે.
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ નું મૂલ્ય લઘુતમ મળે.
એક પદાર્થ પર બે બળો કે જેમના મૂલ્યો અનુક્રમે $3\,N$ અને $4\,N$ હોય તેવા બળો લાગે છે. જો તેમના વચ્ચેનો ખૂણો $0^o$ હોય તો તેમનું પરિણામી બળ..........$N$
જો $\vec P , \vec Q $ અને $\vec R $ ના મૂલ્યો $5$,$12$ અને $13$ એકમ છે અને જો $\vec P + \vec Q =\vec R $ હોય તો $\vec Q $ અને $\vec R $ વચ્ચેનો ખૂણો ........ હોય