$\vec A$ અને $\vec B $ નો પરિણામી સદીશ $\vec R_1$ છે . વિરુદ્ધ સદીશ $\vec B $ પર પરિણામી સદીશ $\vec R_2 $ બને તો ${\rm{R}}_{\rm{1}}^{\rm{2}}\,\, + \,\,{\rm{R}}_{\rm{2}}^{\rm{2}}$ નું મૂલ્ય શું હશે ?

  • A

    $A^2 + B^2$

  • B

    $A^2- B^2$

  • C

    $2(A^2 + B^2)$

  • D

    $2(A^2- B^2)$

Similar Questions

$a$ બાજુ ધરાવતા ઘનમાં, ફલક (સપાટી) $ABOD$ ના કેન્દ્ર આગળથી ફલક $BEFO$ ના કેન્દ્ર સુધી (આકૃતિમાં દર્શાવ્યા અનુસાર) દોરેલ સદિશ કયો હશે.

  • [JEE MAIN 2019]

બે સદિશો $\overrightarrow A $ અને $\overrightarrow B $ ના માન અનુક્રમે $4$ એકમ અને $3$ એકમ છે. જો આ અદિશો $(i)$ એકજ દિશામાં $(\theta = 0^o)$. $(ii)$ પરસ્પર વિરુદ્ધ દિશામાં $(\theta = 180^o)$ હોય, તો પરિણામી સદિશનું માન જણાવો.

કોઈ સદિશ $\vec A $ માથી એક નવો સદિશ $\vec B$ મેળવવા માટે તેને $\Delta \theta$ રેડિયન $( \Delta \theta << 1)$ જેટલું કોણાવર્તન કરાવવામાં આવે છે. તો આ કિસ્સામાં $\left| {\vec B - \vec A} \right|$ શું થશે?

  • [JEE MAIN 2015]

જો $\mathop {\,{\rm{A}}}\limits^ \to  \,\, + \;\,\mathop {\rm{B}}\limits^ \to  \,\, = \,\mathop {\rm{C}}\limits^ \to  $ અને $ {\rm{A}}\,\, + \;\,{\rm{B}}\,\, = \,\,{\rm{C}}\,$ હોય $\vec A $ અને $\vec B $ વચ્ચેનો ખૂણો કેટલો થાય . 

વિધાન $I :$ બે બળો $(\overrightarrow{{P}}+\overrightarrow{{Q}})$ અને $(\overrightarrow{{P}}-\overrightarrow{{Q}})$, જ્યાં $\overrightarrow{{P}} \perp \overrightarrow{{Q}}$, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{1}$ ખૂણે હોય ત્યારે તેનું પરિણામી બળ $\sqrt{3\left({P}^{2}+{Q}^{2}\right)}$ મળે, જ્યારે આ બંને બળો એકબીજા સાથે $\theta_{2}$ ખૂણે હોય, ત્યારે તેનું પરિણામી $\sqrt{2\left({P}^{2}+{Q}^{2}\right)}$ મળે છે. આ માત્ર $\theta_{1}<\theta_{2}$ માટે શક્ય છે. 
વિધાન $II :$ ઉપર આપેલ પરિસ્થિતીમાં $\theta_{1}=60^{\circ}$ અને $\theta_{2}=90^{\circ}$ હોય.
આપેલ વિધાનોમાંથી સૌથી યોગ્ય જવાબ પસંદ કરો.

  • [JEE MAIN 2021]