${K_a}$ of $C{H_3}COOH$ is $1.76 \times {10^{ - 5}}$ at $298$ $K$ temperature. Calculate dissociation constant of its conjugate base.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$5.9 \times 10^{-10}$

Similar Questions

Degree of dissociation of $0.1\,N\,\,C{H_3}COOH$ is (Dissociation constant $ = 1 \times {10^{ - 5}}$)

A compound whose aqueous solution will have the highest $pH$

Derive ${K_a} \times {K_b} = {K_w}$ equation.

A weak acid $HA$ has a $K_a$ of $1.00 \times 10^{-5} $. If $0.100\,mol$ of this acid is dissolved in one litre of water the percentage of acid dissociated at equilibrium is closest to.....$\%$

The percentage of pyridine $(C_5H_5N)$ that forms pyridinium ion $(C_5H_5N^+H)$ in a $0.10\, M$ aqueous pyridine solution ($K_b$ for $C_5H_5N = 1.7 \times 10^{-9}$) is

  • [NEET 2016]